Expr
struct Expr
Expressions that can be used in various contexts.
operator -
pub fn operator -(self): Expr
operator -
pub fn operator -(self): Expr
operator %
pub fn operator %(self, other: Expr): Expr
operator %
pub fn operator %(self, other: Expr): Expr
operator /
pub fn operator /(self, other: Expr): Expr
operator /
pub fn operator /(self, other: Expr): Expr
operator *
pub fn operator *(self, other: Expr): Expr
operator *
pub fn operator *(self, other: Expr): Expr
operator -
pub fn operator -(self, other: Expr): Expr
operator -
pub fn operator -(self, other: Expr): Expr
operator +
pub fn operator +(self, other: Expr): Expr
operator +
pub fn operator +(self, other: Expr): Expr
operator ^
pub fn operator ^(self, other: Expr): Expr
operator ^
pub fn operator ^(self, other: Expr): Expr
operator |
pub fn operator |(self, b: Expr): Expr
operator |
pub fn operator |(self, b: Expr): Expr
operator !
pub fn operator !(self): Expr
operator !
pub fn operator !(self): Expr
operator !=
pub fn operator !=(self, b: Expr): Expr
operator !=
pub fn operator !=(self, b: Expr): Expr
operator <=
pub fn operator <=(self, other: Expr): Expr
operator <=
pub fn operator <=(self, other: Expr): Expr
operator <
pub fn operator <(self, b: Expr): Expr
operator <
pub fn operator <(self, b: Expr): Expr
operator ||
pub fn operator ||(self, b: Expr): Expr
operator ||
pub fn operator ||(self, b: Expr): Expr
operator &&
pub fn operator &&(self, b: Expr): Expr
operator &&
pub fn operator &&(self, b: Expr): Expr
operator >=
pub fn operator >=(self, b: Expr): Expr
operator >=
pub fn operator >=(self, b: Expr): Expr
operator >
pub fn operator >(self, b: Expr): Expr
operator >
pub fn operator >(self, b: Expr): Expr
operator ==
pub fn operator ==(self, b: Expr): Expr
operator ==
pub fn operator ==(self, b: Expr): Expr
operator &
pub fn operator &(self, b: Expr): Expr
operator &
pub fn operator &(self, b: Expr): Expr
[src]
pub fn all(): Expr {
return Expr.col("*");
}
Selects all columns.
[src]
pub fn all(): Expr {
return Expr.col("*");
}
Selects all columns.
Selects all columns.
Shorthand for col("*").
Create a Column Expression based on a column name.
Create a Column Expression based on a column name.
Create a Column Expression based on a column name.
Crete a Column Expression select multiple columns.
Crete a Column Expression select multiple columns.
Crete a Column Expression select multiple columns.
concat_arr
pub fn concat_arr(exprs: [Expr]): Expr throws PolarsError
Horizontally concatenate columns into a single array-type column.
concat_arr
pub fn concat_arr(exprs: [Expr]): Expr throws PolarsError
Horizontally concatenate columns into a single array-type column.
Horizontally concatenate columns into a single array-type column.
concat_expr
pub fn concat_expr(exprs: [Expr], rechunk: bool = false): Expr throws PolarsError
concat_expr
pub fn concat_expr(exprs: [Expr], rechunk: bool = false): Expr throws PolarsError
concat_list
pub fn concat_list(exprs: [Expr]): Expr throws PolarsError
Concat lists entries.
concat_list
pub fn concat_list(exprs: [Expr]): Expr throws PolarsError
Concat lists entries.
Concat lists entries.
concat_str
pub fn concat_str(exprs: [Expr], separator: string = ",", ignore_nulls: bool = true): Expr
Horizontally concat string columns in linear time.
concat_str
pub fn concat_str(exprs: [Expr], separator: string = ",", ignore_nulls: bool = true): Expr
Horizontally concat string columns in linear time.
Horizontally concat string columns in linear time.
date_range
pub fn date_range(start: Expr, end: Expr, interval: Duration, closed: ClosedWindow): Expr
[src]
pub fn date_range(start: Expr, end: Expr, interval: Duration, closed: ClosedWindow): Expr {
return Expr._date_range(start, end, interval, closed as int);
}
Create a column of date ranges from a start and stop expression.
date_range
pub fn date_range(start: Expr, end: Expr, interval: Duration, closed: ClosedWindow): Expr
[src]
pub fn date_range(start: Expr, end: Expr, interval: Duration, closed: ClosedWindow): Expr {
return Expr._date_range(start, end, interval, closed as int);
}
Create a column of date ranges from a start and stop expression.
Create a column of date ranges from a start and stop expression.
datetime
pub fn datetime(year: Expr = Expr.lit(1970), month: Expr = Expr.lit(1), day: Expr = Expr.lit(1), hour: Expr = Expr.lit(0), minute: Expr = Expr.lit(0), second: Expr = Expr.lit(0), microsecond: Expr = Expr.lit(0), time_unit: TimeUnit = TimeUnit.Microseconds, time_zone: string? = nil, ambiguous: Expr = Expr.lit("raise")): Expr
[src]
pub fn datetime(
year: Expr = Expr.lit(1970),
month: Expr = Expr.lit(1),
day: Expr = Expr.lit(1),
hour: Expr = Expr.lit(0),
minute: Expr = Expr.lit(0),
second: Expr = Expr.lit(0),
microsecond: Expr = Expr.lit(0),
time_unit: TimeUnit = TimeUnit.Microseconds,
time_zone: string? = nil,
ambiguous: Expr = Expr.lit("raise")
): Expr {
return Expr
._datetime(
year,
month,
day,
hour,
minute,
second,
microsecond,
time_unit as int,
time_zone,
ambiguous
);
}
Create a column of Datetime.
datetime
pub fn datetime(year: Expr = Expr.lit(1970), month: Expr = Expr.lit(1), day: Expr = Expr.lit(1), hour: Expr = Expr.lit(0), minute: Expr = Expr.lit(0), second: Expr = Expr.lit(0), microsecond: Expr = Expr.lit(0), time_unit: TimeUnit = TimeUnit.Microseconds, time_zone: string? = nil, ambiguous: Expr = Expr.lit("raise")): Expr
[src]
pub fn datetime(
year: Expr = Expr.lit(1970),
month: Expr = Expr.lit(1),
day: Expr = Expr.lit(1),
hour: Expr = Expr.lit(0),
minute: Expr = Expr.lit(0),
second: Expr = Expr.lit(0),
microsecond: Expr = Expr.lit(0),
time_unit: TimeUnit = TimeUnit.Microseconds,
time_zone: string? = nil,
ambiguous: Expr = Expr.lit("raise")
): Expr {
return Expr
._datetime(
year,
month,
day,
hour,
minute,
second,
microsecond,
time_unit as int,
time_zone,
ambiguous
);
}
Create a column of Datetime.
Create a column of Datetime.
datetime_range
pub fn datetime_range(start: Expr, end: Expr, interval: Duration, closed: ClosedWindow, time_unit: TimeUnit? = nil, time_zone: string? = nil): Expr
[src]
pub fn datetime_range(
start: Expr,
end: Expr,
interval: Duration,
closed: ClosedWindow,
time_unit: TimeUnit? = nil,
time_zone: string? = nil
): Expr {
return Expr
._datetime_range(
start,
end,
interval,
closed as int,
time_unit.map(|time_unit| time_unit as int),
time_zone
);
}
Create a datetime range from a start and stop expression.
datetime_range
pub fn datetime_range(start: Expr, end: Expr, interval: Duration, closed: ClosedWindow, time_unit: TimeUnit? = nil, time_zone: string? = nil): Expr
[src]
pub fn datetime_range(
start: Expr,
end: Expr,
interval: Duration,
closed: ClosedWindow,
time_unit: TimeUnit? = nil,
time_zone: string? = nil
): Expr {
return Expr
._datetime_range(
start,
end,
interval,
closed as int,
time_unit.map(|time_unit| time_unit as int),
time_zone
);
}
Create a datetime range from a start and stop expression.
Create a datetime range from a start and stop expression.
datetime_ranges
pub fn datetime_ranges(start: Expr, end: Expr, interval: Duration, closed: ClosedWindow, time_unit: TimeUnit? = nil, time_zone: string? = nil): Expr
[src]
pub fn datetime_ranges(
start: Expr,
end: Expr,
interval: Duration,
closed: ClosedWindow,
time_unit: TimeUnit? = nil,
time_zone: string? = nil
): Expr {
return Expr
._datetime_ranges(
start,
end,
interval,
closed as int,
time_unit.map(|time_unit| time_unit as int),
time_zone
);
}
Create a column of datetime ranges from a start and stop expression.
datetime_ranges
pub fn datetime_ranges(start: Expr, end: Expr, interval: Duration, closed: ClosedWindow, time_unit: TimeUnit? = nil, time_zone: string? = nil): Expr
[src]
pub fn datetime_ranges(
start: Expr,
end: Expr,
interval: Duration,
closed: ClosedWindow,
time_unit: TimeUnit? = nil,
time_zone: string? = nil
): Expr {
return Expr
._datetime_ranges(
start,
end,
interval,
closed as int,
time_unit.map(|time_unit| time_unit as int),
time_zone
);
}
Create a column of datetime ranges from a start and stop expression.
Create a column of datetime ranges from a start and stop expression.
duration
pub fn duration(weeks: Expr = Expr.lit(0), days: Expr = Expr.lit(0), hours: Expr = Expr.lit(0), minutes: Expr = Expr.lit(0), seconds: Expr = Expr.lit(0), milliseconds: Expr = Expr.lit(0), microseconds: Expr = Expr.lit(0), nanoseconds: Expr = Expr.lit(0), time_unit: TimeUnit = TimeUnit.Microseconds): Expr
[src]
pub fn duration(
weeks: Expr = Expr.lit(0),
days: Expr = Expr.lit(0),
hours: Expr = Expr.lit(0),
minutes: Expr = Expr.lit(0),
seconds: Expr = Expr.lit(0),
milliseconds: Expr = Expr.lit(0),
microseconds: Expr = Expr.lit(0),
nanoseconds: Expr = Expr.lit(0),
time_unit: TimeUnit = TimeUnit.Microseconds
): Expr {
return Expr
._duration(
weeks,
days,
hours,
minutes,
seconds,
milliseconds,
microseconds,
nanoseconds,
time_unit as int
);
}
Construct a column of Duration.
duration
pub fn duration(weeks: Expr = Expr.lit(0), days: Expr = Expr.lit(0), hours: Expr = Expr.lit(0), minutes: Expr = Expr.lit(0), seconds: Expr = Expr.lit(0), milliseconds: Expr = Expr.lit(0), microseconds: Expr = Expr.lit(0), nanoseconds: Expr = Expr.lit(0), time_unit: TimeUnit = TimeUnit.Microseconds): Expr
[src]
pub fn duration(
weeks: Expr = Expr.lit(0),
days: Expr = Expr.lit(0),
hours: Expr = Expr.lit(0),
minutes: Expr = Expr.lit(0),
seconds: Expr = Expr.lit(0),
milliseconds: Expr = Expr.lit(0),
microseconds: Expr = Expr.lit(0),
nanoseconds: Expr = Expr.lit(0),
time_unit: TimeUnit = TimeUnit.Microseconds
): Expr {
return Expr
._duration(
weeks,
days,
hours,
minutes,
seconds,
milliseconds,
microseconds,
nanoseconds,
time_unit as int
);
}
Construct a column of Duration.
Construct a column of Duration.
format_str
pub fn format_str(format: string, args: [Expr]): Expr throws PolarsError
Format the results of an array of expressions using a format string
format_str
pub fn format_str(format: string, args: [Expr]): Expr throws PolarsError
Format the results of an array of expressions using a format string
Format the results of an array of expressions using a format string
index_cols
pub fn index_cols(indices: [int]): Expr
Select multiple columns by index.
index_cols
pub fn index_cols(indices: [int]): Expr
Select multiple columns by index.
Select multiple columns by index.
int_ranges
pub fn int_ranges(start: Expr, end: Expr, step: Expr): Expr
Generate a range of integers for each row of the input columns.
int_ranges
pub fn int_ranges(start: Expr, end: Expr, step: Expr): Expr
Generate a range of integers for each row of the input columns.
Generate a range of integers for each row of the input columns.
linear_space
pub fn linear_space(start: Expr, stop: Expr, num_samples: Expr, closed: ClosedInterval): Expr
[src]
pub fn linear_space(start: Expr, stop: Expr, num_samples: Expr, closed: ClosedInterval): Expr {
return Expr._linear_space(start, stop, num_samples, closed as int);
}
Generate a series of equally-spaced points.
linear_space
pub fn linear_space(start: Expr, stop: Expr, num_samples: Expr, closed: ClosedInterval): Expr
[src]
pub fn linear_space(start: Expr, stop: Expr, num_samples: Expr, closed: ClosedInterval): Expr {
return Expr._linear_space(start, stop, num_samples, closed as int);
}
Generate a series of equally-spaced points.
Generate a series of equally-spaced points.
[src]
pub fn lit(value: Scalar | Column | int | float | bool | string): Expr {
switch (let value = value.(type)) {
case Scalar:
return Expr._literal_scalar(value);
case Column:
return Expr._literal_column(value);
case int:
return Expr._literal_scalar(Scalar.int64(value));
case float:
return Expr._literal_scalar(Scalar.float64(value));
case bool:
return Expr._literal_scalar(Scalar.bool(value));
case string:
return Expr._literal_scalar(Scalar.string(value));
}
}
Create a literal expression.
[src]
pub fn lit(value: Scalar | Column | int | float | bool | string): Expr {
switch (let value = value.(type)) {
case Scalar:
return Expr._literal_scalar(value);
case Column:
return Expr._literal_column(value);
case int:
return Expr._literal_scalar(Scalar.int64(value));
case float:
return Expr._literal_scalar(Scalar.float64(value));
case bool:
return Expr._literal_scalar(Scalar.bool(value));
case string:
return Expr._literal_scalar(Scalar.string(value));
}
}
Create a literal expression.
Create a literal expression.
Convert all values to their absolute/positive value.
Convert all values to their absolute/positive value.
Convert all values to their absolute/positive value.
agg_groups
pub fn agg_groups(self): Expr
Get the group indexes of the group by operation.
agg_groups
pub fn agg_groups(self): Expr
Get the group indexes of the group by operation.
Get the group indexes of the group by operation.
Returns whether all values in the column are true
.
Returns whether all values in the column are true
.
Returns whether all values in the column are true
.
If ignore_nulls
is false
, Kleene logic is used to deal with nulls: if the column contains any null values and no false
values, the output is null.
Returns whether any of the values in the column are true
.
Returns whether any of the values in the column are true
.
Returns whether any of the values in the column are true
.
If ignore_nulls
is False, Kleene logic is used to deal with nulls: if the column contains any null values and no true
values, the output is null.
Append expressions.
Append expressions.
Append expressions.
This is done by adding the chunks of other to this series.
approx_n_unique
pub fn approx_n_unique(self): Expr
Get the approximate count of unique values.
approx_n_unique
pub fn approx_n_unique(self): Expr
Get the approximate count of unique values.
Get the approximate count of unique values.
Compute the inverse cosine of the given expression.
Compute the inverse cosine of the given expression.
Compute the inverse cosine of the given expression.
Compute the inverse hyperbolic cosine of the given expression.
Compute the inverse hyperbolic cosine of the given expression.
Compute the inverse hyperbolic cosine of the given expression.
Compute the inverse sine of the given expression.
Compute the inverse sine of the given expression.
Compute the inverse sine of the given expression.
Compute the inverse hyperbolic sine of the given expression.
Compute the inverse hyperbolic sine of the given expression.
Compute the inverse hyperbolic sine of the given expression.
Compute the inverse tangent of the given expression.
Compute the inverse tangent of the given expression.
Compute the inverse tangent of the given expression.
Compute the inverse tangent of the given expression.
Compute the inverse tangent of the given expression.
Compute the inverse tangent of the given expression.
Compute the inverse hyperbolic tangent of the given expression.
Compute the inverse hyperbolic tangent of the given expression.
Compute the inverse hyperbolic tangent of the given expression.
Get the index value that has the maximum value.
Get the index value that has the maximum value.
Get the index value that has the maximum value.
Get the index value that has the minimum value.
Get the index value that has the minimum value.
Get the index value that has the minimum value.
arg_sort
pub fn arg_sort(self, descending: bool = false, nulls_last: bool = false, multithreaded: bool = true, maintain_order: bool = false, limit: int? = nil): Expr
Get the index values that would sort this expression.
arg_sort
pub fn arg_sort(self, descending: bool = false, nulls_last: bool = false, multithreaded: bool = true, maintain_order: bool = false, limit: int? = nil): Expr
Get the index values that would sort this expression.
Get the index values that would sort this expression.
arg_unique
pub fn arg_unique(self): Expr
Get the first index of unique values of this expression.
arg_unique
pub fn arg_unique(self): Expr
Get the first index of unique values of this expression.
Get the first index of unique values of this expression.
backward_fill
pub fn backward_fill(self, limit: int? = nil): Expr
Fill missing value with next non-null.
backward_fill
pub fn backward_fill(self, limit: int? = nil): Expr
Fill missing value with next non-null.
Fill missing value with next non-null.
Returns the k
smallest elements.
Returns the k
smallest elements.
Returns the k
smallest elements.
This has time complexity O(n + k log(n))
.
bottom_k_by
pub fn bottom_k_by(self, k: Expr, by: [Expr], descending: [bool]): Expr
Returns the k smallest rows by given column.
bottom_k_by
pub fn bottom_k_by(self, k: Expr, by: [Expr], descending: [bool]): Expr
Returns the k smallest rows by given column.
Returns the k smallest rows by given column.
cast
pub fn cast(self, dtype: DataType, opts: CastOptions = .NonStrict): Expr
[src]
pub fn cast(self, dtype: DataType, opts: CastOptions = .NonStrict): Expr {
return self._cast(dtype, opts as int);
}
Cast expression to another data type.
cast
pub fn cast(self, dtype: DataType, opts: CastOptions = .NonStrict): Expr
[src]
pub fn cast(self, dtype: DataType, opts: CastOptions = .NonStrict): Expr {
return self._cast(dtype, opts as int);
}
Cast expression to another data type.
Cast expression to another data type.
Compute the cube root of the given expression.
Compute the cube root of the given expression.
Compute the cube root of the given expression.
Ceil underlying floating point array to the highest integers smaller or equal to the float value.
Ceil underlying floating point array to the highest integers smaller or equal to the float value.
Ceil underlying floating point array to the highest integers smaller or equal to the float value.
Clip underlying values to a set boundary.
Clip underlying values to a set boundary.
Clip underlying values to a set boundary.
Clip underlying values to a set boundary.
Clip underlying values to a set boundary.
Clip underlying values to a set boundary.
Clip underlying values to a set boundary.
Clip underlying values to a set boundary.
Clip underlying values to a set boundary.
Compute the cosine of the given expression
Compute the cosine of the given expression
Compute the cosine of the given expression
Compute the hyperbolic cosine of the given expression.
Compute the hyperbolic cosine of the given expression.
Compute the hyperbolic cosine of the given expression.
Compute the cotangent of the given expression.
Compute the cotangent of the given expression.
Compute the cotangent of the given expression.
Count the values of the Series or Get counts of the group by operation.
Count the values of the Series or Get counts of the group by operation.
Count the values of the Series or Get counts of the group by operation.
Compute the covariance between two columns.
Compute the covariance between two columns.
Compute the covariance between two columns.
Cumulatively count values from 0 to len.
Cumulatively count values from 0 to len.
Cumulatively count values from 0 to len.
Get an array with the cumulative max computed at every element.
Get an array with the cumulative max computed at every element.
Get an array with the cumulative max computed at every element.
Get an array with the cumulative min computed at every element.
Get an array with the cumulative min computed at every element.
Get an array with the cumulative min computed at every element.
Get an array with the cumulative product computed at every element.
Get an array with the cumulative product computed at every element.
Get an array with the cumulative product computed at every element.
Get an array with the cumulative sum computed at every element.
Get an array with the cumulative sum computed at every element.
Get an array with the cumulative sum computed at every element.
Compute the dot/inner product between two expressions.
Compute the dot/inner product between two expressions.
Compute the dot/inner product between two expressions.
drop_nulls
pub fn drop_nulls(self): Expr
Drop null values.
drop_nulls
pub fn drop_nulls(self): Expr
Drop null values.
Drop null values.
[src]
pub fn dtype_col(self, dtype: DataType): Expr {
return Expr._dtype_col(dtype);
}
Select multiple columns by dtype
.
[src]
pub fn dtype_col(self, dtype: DataType): Expr {
return Expr._dtype_col(dtype);
}
Select multiple columns by dtype
.
Select multiple columns by dtype
.
dtype_cols
pub fn dtype_cols(self, dtypes: [DataType]): Expr
[src]
pub fn dtype_cols(self, dtypes: [DataType]): Expr {
return Expr._dtype_cols(dtypes);
}
Select multiple columns by dtypes
.
dtype_cols
pub fn dtype_cols(self, dtypes: [DataType]): Expr
[src]
pub fn dtype_cols(self, dtypes: [DataType]): Expr {
return Expr._dtype_cols(dtypes);
}
Select multiple columns by dtypes
.
Select multiple columns by dtypes
.
Compute the entropy as -sum(pk * log(pk)
.
Compute the entropy as -sum(pk * log(pk)
.
Compute the entropy as -sum(pk * log(pk)
.
where pk are discrete probabilities.
eq_missing
pub fn eq_missing(self, b: Expr): Expr
eq_missing
pub fn eq_missing(self, b: Expr): Expr
ewm_mean
pub fn ewm_mean(self, alpha: float = 0.5, adjust: bool = true, bias: bool = false, min_periods: int = 1, ignore_nulls: bool = true): Expr
Calculate the exponentially-weighted moving average.
ewm_mean
pub fn ewm_mean(self, alpha: float = 0.5, adjust: bool = true, bias: bool = false, min_periods: int = 1, ignore_nulls: bool = true): Expr
Calculate the exponentially-weighted moving average.
Calculate the exponentially-weighted moving average.
ewm_std
pub fn ewm_std(self, alpha: float = 0.5, adjust: bool = true, bias: bool = false, min_periods: int = 1, ignore_nulls: bool = true): Expr
Calculate the exponentially-weighted moving standard deviation.
ewm_std
pub fn ewm_std(self, alpha: float = 0.5, adjust: bool = true, bias: bool = false, min_periods: int = 1, ignore_nulls: bool = true): Expr
Calculate the exponentially-weighted moving standard deviation.
Calculate the exponentially-weighted moving standard deviation.
ewm_var
pub fn ewm_var(self, alpha: float = 0.5, adjust: bool = true, bias: bool = false, min_periods: int = 1, ignore_nulls: bool = true): Expr
Calculate the exponentially-weighted moving variance.
ewm_var
pub fn ewm_var(self, alpha: float = 0.5, adjust: bool = true, bias: bool = false, min_periods: int = 1, ignore_nulls: bool = true): Expr
Calculate the exponentially-weighted moving variance.
Calculate the exponentially-weighted moving variance.
Exclude a column from a wildcard/regex selection.
Exclude a column from a wildcard/regex selection.
Exclude a column from a wildcard/regex selection.
You may also use regexes in the exclude as long as they start with ^
and end with $
.
exclude_dtype
pub fn exclude_dtype(self, dtypes: [DataType]): Expr
[src]
pub fn exclude_dtype(self, dtypes: [DataType]): Expr {
return self._exclude_dtype(dtypes);
}
Exclude a column with a certain data type.
exclude_dtype
pub fn exclude_dtype(self, dtypes: [DataType]): Expr
[src]
pub fn exclude_dtype(self, dtypes: [DataType]): Expr {
return self._exclude_dtype(dtypes);
}
Exclude a column with a certain data type.
Exclude a column with a certain data type.
Calculate the exponential of all elements in the input array.
Calculate the exponential of all elements in the input array.
Calculate the exponential of all elements in the input array.
extend_constant
pub fn extend_constant(self, value: Expr, n: Expr): Expr
extend_constant
pub fn extend_constant(self, value: Expr, n: Expr): Expr
Replace the floating point NaN values by a value.
Replace the floating point NaN values by a value.
Replace the floating point NaN values by a value.
Replace the null values by a value.
Replace the null values by a value.
Replace the null values by a value.
Filter a single column.
Filter a single column.
Filter a single column.
Should be used in aggregation context. If you want to filter on a DataFrame level, use DataFrame.filter
.
Floor underlying floating point array to the lowest integers smaller or equal to the float value.
Floor underlying floating point array to the lowest integers smaller or equal to the float value.
Floor underlying floating point array to the lowest integers smaller or equal to the float value.
forward_fill
pub fn forward_fill(self, limit: int? = nil): Expr
Floor divide self
by rhs
.
forward_fill
pub fn forward_fill(self, limit: int? = nil): Expr
Floor divide self
by rhs
.
Floor divide self
by rhs
.
gather_every
pub fn gather_every(self, n: int, offset: int): Expr
gather_every
pub fn gather_every(self, n: int, offset: int): Expr
Take the values by a single index.
Take the values by a single index.
Take the values by a single index.
Get the first n
elements of the Expr
result.
Get the first n
elements of the Expr
result.
Get the first n
elements of the Expr
result.
hist
pub fn hist(self, bins: Expr? = nil, bin_count: int? = nil, include_category: bool = false, include_breakpoints: bool = false): Expr
Compute the histogram of a dataset.
hist
pub fn hist(self, bins: Expr? = nil, bin_count: int? = nil, include_category: bool = false, include_breakpoints: bool = false): Expr
Compute the histogram of a dataset.
Compute the histogram of a dataset.
[src]
pub fn int_range(self, start: Expr, end: Expr, step: int, dtype: DataType): Expr {
return Expr._int_range(start, end, step, dtype);
}
Generate a range of integers.
[src]
pub fn int_range(self, start: Expr, end: Expr, step: int, dtype: DataType): Expr {
return Expr._int_range(start, end, step, dtype);
}
Generate a range of integers.
Generate a range of integers.
interpolate
pub fn interpolate(self, method: InterpolationMethod = .Linear): Expr
[src]
pub fn interpolate(self, method: InterpolationMethod = .Linear): Expr {
return self._interpolate(method as int);
}
Fill null values using interpolation.
interpolate
pub fn interpolate(self, method: InterpolationMethod = .Linear): Expr
[src]
pub fn interpolate(self, method: InterpolationMethod = .Linear): Expr {
return self._interpolate(method as int);
}
Fill null values using interpolation.
Fill null values using interpolation.
interpolate_by
pub fn interpolate_by(self, by: Expr): Expr
Fill null values using interpolation.
interpolate_by
pub fn interpolate_by(self, by: Expr): Expr
Fill null values using interpolation.
Fill null values using interpolation.
is_duplicated
pub fn is_duplicated(self): Expr
Get a mask of duplicated values.
is_duplicated
pub fn is_duplicated(self): Expr
Get a mask of duplicated values.
Get a mask of duplicated values.
Get mask of finite values if dtype is Float.
Get mask of finite values if dtype is Float.
Get mask of finite values if dtype is Float.
is_first_distinct
pub fn is_first_distinct(self): Expr
Get a mask of the first unique value.
is_first_distinct
pub fn is_first_distinct(self): Expr
Get a mask of the first unique value.
Get a mask of the first unique value.
Check if the values of the left expression are in the lists of the right expr.
Check if the values of the left expression are in the lists of the right expr.
Check if the values of the left expression are in the lists of the right expr.
is_infinite
pub fn is_infinite(self): Expr
Get mask of infinite values if dtype is Float.
is_infinite
pub fn is_infinite(self): Expr
Get mask of infinite values if dtype is Float.
Get mask of infinite values if dtype is Float.
is_last_distinct
pub fn is_last_distinct(self): Expr
Get mask of infinite values if dtype is Float.
is_last_distinct
pub fn is_last_distinct(self): Expr
Get mask of infinite values if dtype is Float.
Get mask of infinite values if dtype is Float.
Get mask of NaN values if dtype is Float.
Get mask of NaN values if dtype is Float.
Get mask of NaN values if dtype is Float.
is_not_nan
pub fn is_not_nan(self): Expr
Get inverse mask of NaN values if dtype is Float.
is_not_nan
pub fn is_not_nan(self): Expr
Get inverse mask of NaN values if dtype is Float.
Get inverse mask of NaN values if dtype is Float.
is_not_null
pub fn is_not_null(self): Expr
Run is_not_null operation on Expr
.
is_not_null
pub fn is_not_null(self): Expr
Run is_not_null operation on Expr
.
Run is_not_null operation on Expr
.
Compute the kurtosis (Fisher or Pearson).
Compute the kurtosis (Fisher or Pearson).
Compute the kurtosis (Fisher or Pearson).
Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution. If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators.
Compute the logarithm to a given base.
Compute the logarithm to a given base.
Compute the logarithm to a given base.
Compute the natural logarithm of all elements plus one in the input array.
Compute the natural logarithm of all elements plus one in the input array.
Compute the natural logarithm of all elements plus one in the input array.
lower_bound
pub fn lower_bound(self): Expr
Get minimal value that could be hold by this dtype.
lower_bound
pub fn lower_bound(self): Expr
Get minimal value that could be hold by this dtype.
Get minimal value that could be hold by this dtype.
Reduce groups to the median value.
Reduce groups to the median value.
Reduce groups to the median value.
Compute the mode(s) of this column. This is the most occurring value.
Compute the mode(s) of this column. This is the most occurring value.
Compute the mode(s) of this column. This is the most occurring value.
Get the number of unique values in the groups.
Get the number of unique values in the groups.
Get the number of unique values in the groups.
neq_missing
pub fn neq_missing(self, b: Expr): Expr
Compare Expr
with other Expr
on non-equality where nil
== nil
.
neq_missing
pub fn neq_missing(self, b: Expr): Expr
Compare Expr
with other Expr
on non-equality where nil
== nil
.
Compare Expr
with other Expr
on non-equality where nil
== nil
.
null_count
pub fn null_count(self): Expr
Get the null count of the column/group.
null_count
pub fn null_count(self): Expr
Get the null count of the column/group.
Get the null count of the column/group.
over
pub fn over(self, partition_by: [Expr], order_by: [Expr]? = nil, descending: bool = false, nulls_last: bool = false, multithreaded: bool = true, maintain_order: bool = false, limit: int? = nil, window_mapping: WindowMapping = .GroupsToRows): Expr
[src]
pub fn over(
self,
partition_by: [Expr],
order_by: [Expr]? = nil,
descending: bool = false,
nulls_last: bool = false,
multithreaded: bool = true,
maintain_order: bool = false,
limit: int? = nil,
window_mapping: WindowMapping = .GroupsToRows
): Expr {
return self
._over(
partition_by,
order_by,
descending,
nulls_last,
multithreaded,
maintain_order,
limit,
window_mapping as int
);
}
Apply window function over a subgroup.
over
pub fn over(self, partition_by: [Expr], order_by: [Expr]? = nil, descending: bool = false, nulls_last: bool = false, multithreaded: bool = true, maintain_order: bool = false, limit: int? = nil, window_mapping: WindowMapping = .GroupsToRows): Expr
[src]
pub fn over(
self,
partition_by: [Expr],
order_by: [Expr]? = nil,
descending: bool = false,
nulls_last: bool = false,
multithreaded: bool = true,
maintain_order: bool = false,
limit: int? = nil,
window_mapping: WindowMapping = .GroupsToRows
): Expr {
return self
._over(
partition_by,
order_by,
descending,
nulls_last,
multithreaded,
maintain_order,
limit,
window_mapping as int
);
}
Apply window function over a subgroup.
Apply window function over a subgroup.
This is similar to a group_by + aggregation + self join.
pct_change
pub fn pct_change(self, n: Expr): Expr
Computes percentage change between values.
pct_change
pub fn pct_change(self, n: Expr): Expr
Computes percentage change between values.
Computes percentage change between values.
pearson_corr
pub fn pearson_corr(self, other: Expr): Expr
Compute the pearson correlation between two columns.
pearson_corr
pub fn pearson_corr(self, other: Expr): Expr
Compute the pearson correlation between two columns.
Compute the pearson correlation between two columns.
Raise expression to the power exponent
.
Raise expression to the power exponent
.
Raise expression to the power exponent
.
Get the product aggregation of an expression.
Get the product aggregation of an expression.
Get the product aggregation of an expression.
qcut
pub fn qcut(self, probs: [float], labels: [string]? = nil, left_closed: bool = false, allow_duplicates: bool = false, include_breaks: bool = false): Expr
Bin continuous values into discrete categories based on their quantiles.
qcut
pub fn qcut(self, probs: [float], labels: [string]? = nil, left_closed: bool = false, allow_duplicates: bool = false, include_breaks: bool = false): Expr
Bin continuous values into discrete categories based on their quantiles.
Bin continuous values into discrete categories based on their quantiles.
qcut_uniform
pub fn qcut_uniform(self, n_bins: int, labels: [string]? = nil, left_closed: bool = false, allow_duplicates: bool = false, include_breaks: bool = false): Expr
Bin continuous values into discrete categories using uniform quantile probabilities.
qcut_uniform
pub fn qcut_uniform(self, n_bins: int, labels: [string]? = nil, left_closed: bool = false, allow_duplicates: bool = false, include_breaks: bool = false): Expr
Bin continuous values into discrete categories using uniform quantile probabilities.
Bin continuous values into discrete categories using uniform quantile probabilities.
quantile
pub fn quantile(self, quantile: Expr, method: QuantileMethod): Expr
[src]
pub fn quantile(self, quantile: Expr, method: QuantileMethod): Expr {
return self._quantile(quantile, method as int);
}
Compute the quantile per group.
quantile
pub fn quantile(self, quantile: Expr, method: QuantileMethod): Expr
[src]
pub fn quantile(self, quantile: Expr, method: QuantileMethod): Expr {
return self._quantile(quantile, method as int);
}
Compute the quantile per group.
Compute the quantile per group.
rank
pub fn rank(self, method: RankMethod = .Dense, descending: bool = false, seed: int? = nil): Expr
[src]
pub fn rank(self, method: RankMethod = .Dense, descending: bool = false, seed: int? = nil): Expr {
return self._rank(method as int, descending, seed);
}
Assign ranks to data, dealing with ties appropriately.
rank
pub fn rank(self, method: RankMethod = .Dense, descending: bool = false, seed: int? = nil): Expr
[src]
pub fn rank(self, method: RankMethod = .Dense, descending: bool = false, seed: int? = nil): Expr {
return self._rank(method as int, descending, seed);
}
Assign ranks to data, dealing with ties appropriately.
Assign ranks to data, dealing with ties appropriately.
Replace the given values with other values.
Replace the given values with other values.
Replace the given values with other values.
replace_strict
pub fn replace_strict(self, old: Expr, new: Expr, default_: Expr? = nil, return_dtype: DataType? = nil): Expr
[src]
pub fn replace_strict(
self, old: Expr, new: Expr, default_: Expr? = nil, return_dtype: DataType? = nil
): Expr {
return self._replace_strict(old, new, default_, return_dtype);
}
Replace the given values with other values.
replace_strict
pub fn replace_strict(self, old: Expr, new: Expr, default_: Expr? = nil, return_dtype: DataType? = nil): Expr
[src]
pub fn replace_strict(
self, old: Expr, new: Expr, default_: Expr? = nil, return_dtype: DataType? = nil
): Expr {
return self._replace_strict(old, new, default_, return_dtype);
}
Replace the given values with other values.
Replace the given values with other values.
Get the lengths of runs of identical values.
Get the lengths of runs of identical values.
Get the lengths of runs of identical values.
Similar to rle
, but maps values to run IDs.
Similar to rle
, but maps values to run IDs.
Similar to rle
, but maps values to run IDs.
Round underlying floating point array to given decimal numbers.
Round underlying floating point array to given decimal numbers.
Round underlying floating point array to given decimal numbers.
round_sig_figs
pub fn round_sig_figs(self, digits: int): Expr
Round underlying floating point array to given decimal numbers.
round_sig_figs
pub fn round_sig_figs(self, digits: int): Expr
Round underlying floating point array to given decimal numbers.
Round underlying floating point array to given decimal numbers.
Shift the values in the array by some period.
Shift the values in the array by some period.
Shift the values in the array by some period.
shift_and_fill
pub fn shift_and_fill(self, n: Expr, fill_value: Expr): Expr
Shift the values in the array by some period and fill the resulting empty values.
shift_and_fill
pub fn shift_and_fill(self, n: Expr, fill_value: Expr): Expr
Shift the values in the array by some period and fill the resulting empty values.
Shift the values in the array by some period and fill the resulting empty values.
shrink_dtype
pub fn shrink_dtype(self): Expr
Shrink numeric columns to the minimal required datatype needed to fit the extrema of this Series.
shrink_dtype
pub fn shrink_dtype(self): Expr
Shrink numeric columns to the minimal required datatype needed to fit the extrema of this Series.
Shrink numeric columns to the minimal required datatype needed to fit the extrema of this Series.
This can be used to reduce memory pressure.
Slice the Series.
Slice the Series.
Slice the Series.
offset may be negative.
sort
pub fn sort(self, descending: bool = false, nulls_last: bool = false, multithreaded: bool = true, maintain_order: bool = false, limit: int? = nil): Expr
Sort with given options.
sort
pub fn sort(self, descending: bool = false, nulls_last: bool = false, multithreaded: bool = true, maintain_order: bool = false, limit: int? = nil): Expr
Sort with given options.
Sort with given options.
sort_by
pub fn sort_by(self, by: [Expr], descending: [bool] = [false], nulls_last: [bool] = [false], multithreaded: bool = true, maintain_order: bool = false, limit: int? = nil): Expr
[src]
pub fn sort_by(
self,
by: [Expr],
descending: [bool] = [false],
nulls_last: [bool] = [false],
multithreaded: bool = true,
maintain_order: bool = false,
limit: int? = nil
): Expr {
return self._sort_by(by, descending, nulls_last, multithreaded, maintain_order, limit);
}
Sort this column by the ordering of another column evaluated from given expr.
sort_by
pub fn sort_by(self, by: [Expr], descending: [bool] = [false], nulls_last: [bool] = [false], multithreaded: bool = true, maintain_order: bool = false, limit: int? = nil): Expr
[src]
pub fn sort_by(
self,
by: [Expr],
descending: [bool] = [false],
nulls_last: [bool] = [false],
multithreaded: bool = true,
maintain_order: bool = false,
limit: int? = nil
): Expr {
return self._sort_by(by, descending, nulls_last, multithreaded, maintain_order, limit);
}
Sort this column by the ordering of another column evaluated from given expr.
Sort this column by the ordering of another column evaluated from given expr.
Can also be used in a group_by context to sort the groups.
Compute the square root of the given expression
Compute the square root of the given expression
Compute the square root of the given expression
Compute the square root of the given expression
Compute the square root of the given expression
Compute the square root of the given expression
strict_cast
pub fn strict_cast(self, dtype: DataType): Expr
[src]
pub fn strict_cast(self, dtype: DataType): Expr {
return self._strict_cast(dtype);
}
Cast expression to another data type.
strict_cast
pub fn strict_cast(self, dtype: DataType): Expr
[src]
pub fn strict_cast(self, dtype: DataType): Expr {
return self._strict_cast(dtype);
}
Cast expression to another data type.
Cast expression to another data type.
Reduce groups to the sum of all the values.
Reduce groups to the sum of all the values.
Reduce groups to the sum of all the values.
Get the last n
elements of the Expr result.
Get the last n
elements of the Expr result.
Get the last n
elements of the Expr result.
Get unique values of this expression.
Get unique values of this expression.
Get unique values of this expression.
unique_counts
pub fn unique_counts(self): Expr
Returns a count of the unique values in the order of appearance.
unique_counts
pub fn unique_counts(self): Expr
Returns a count of the unique values in the order of appearance.
Returns a count of the unique values in the order of appearance.
upper_bound
pub fn upper_bound(self): Expr
Get maximal value that could be hold by this dtype.
upper_bound
pub fn upper_bound(self): Expr
Get maximal value that could be hold by this dtype.
Get maximal value that could be hold by this dtype.
value_counts
pub fn value_counts(self, name: string, sort: bool = false, parallel: bool = false, normalize: bool = false): Expr
Count all unique values and create a struct mapping value to count.
value_counts
pub fn value_counts(self, name: string, sort: bool = false, parallel: bool = false, normalize: bool = false): Expr
Count all unique values and create a struct mapping value to count.
Count all unique values and create a struct mapping value to count.
The name of the struct field with the counts is given by the parameter name
.